Добро пожаловать


Image and Video Colorization Using OpenCV Python | Colorization AI for Images & Videos

Добавлено от Admin В Русские комедии
1 Просмотры

Спасибо! Поделитесь с друзьями!


Вам не понравилось видео. Спасибо за то что поделились своим мнением!

К сожалению, только зарегистрированные пользователи могут создавать списки воспроизведения.


Tutorial for automatic colorization of images and videos with Python OpenCV. AI-based colorization model is used to colorize images and videos. I not only walk you through how to colorize black and white images but also how to obtain a speedup using CUDA with OpenCV for the colorization of black and white videos. The method of colorization works for grayscale images as well and has some astonishing results on portrait colorization.

*Code is available for our Patreon Supporters*

Build OpenCV With CUDA Support on Windows: https://youtu.be/YsmhKar8oOc
► Time Stamps:
Introduction: (0:00)
Image Colorizer: (0:14)
Video Colorizer: (6:50)
Video Colorization with CUDA: (9:49)
► Links:
Want to discuss more?
►Join my discord: https://discord.gg/kUUvTQTTau

► Data Science Books Collection: https://kit.co/HaroonShakeel/data-science-essential-books
► Deep Learning Equipment Collection: https://kit.co/HaroonShakeel/deep-learning-equipment
► Recommended equipment for Deep Learning and Computer Vision with the best price-to-performance ratio
► YouTube Vlogging Essentials: https://kit.co/HaroonShakeel/youtube-essentials

► Recommended equipment for Deep Learning and Computer Vision with the best price-to-performance ratio
○ Acer Predator Helios 300 Gaming Laptop: https://amzn.to/3bSLtCW
○ ASUS TUF Gaming Laptop (budget): https://amzn.to/3sH953j
○ MSI Gaming GeForce RTX 3070 8GB GPU: https://amzn.to/2LHIbI5
○ EVGA 08G-P5-3755-KR GeForce RTX 3070 XC3 Ultra Gaming GPU: https://amzn.to/391gQJy
► Top Books to help your Data Science, Computer Vision, and NLP career
○ Bad Data: https://amzn.to/2Lj0Ycg
○ Data Cleaning: https://amzn.to/3nxxqEU
○ Data Wrangling with Python: Tips and Tools to Make Your Life Easier: https://amzn.to/3q0Sbuq
○ Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython: https://amzn.to/3oCrTy8
○ Learning OpenCV 4 Computer Vision with Python 3: https://amzn.to/3hZdee6
○ Practical Natural Language Processing: A Comprehensive Guide to Building Real-World NLP Systems: https://amzn.to/3btpMZJ
○ Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit: https://amzn.to/38uWoR9
► My Other Tutorials:
○ Face Detection Using OpenCV Python with CUDA GPU Acceleration: https://youtu.be/GXcy7Di1oys
○ Build and Install OpenCV 4.5.1 With CUDA GPU Support on Windows 10: https://youtu.be/YsmhKar8oOc
○ YOLOv4 On Android Using TFLite: https://youtu.be/YzAjAS6Os8c
○ Custom YOLOv4 Object Detection with TensorFlow and TFLite : https://youtu.be/vzTCJM18uoM
○ Darknet YOLOv4 Custom Object Detection: Part 2 (Training YOLOv4 Darknet): https://youtu.be/-NEB5P-SLi0
○ Darknet YOLOv4 Custom Object Detection: Part 1 (Preparing Custom Dataset): https://youtu.be/sKDysNtnhJ4
○ YOLOv4 Object Detection with TensorFlow, TFLite and TensorRT: https://youtu.be/tCmC7nyfJp8
○ Darknet YOLOv4 Object Detection for Windows 10 on Images, Videos, and Webcams: https://youtu.be/FE2GBeKuqpc
○ Real-Time Object Detection on Webcam and Videos Using OpenCV With YOLOv3 and YOLOv4 | Windows Linux: https://youtu.be/FjyF03uawsA
○ Build and Install OpenCV 4.4.0 With CUDA (GPU) Support on Windows 10: https://youtu.be/tjXkW0-4gME
○ Install TensorFlow GPU and PyTorch with CUDA on Windows 10 Anaconda | CUDA 10.1 cuDNN 7.6: https://youtu.be/PlW9zAg4cx8
○ Real-time Multiple Object Tracking with YOLOv4 TensorFlow and Deep Sort | Linux, Windows: https://youtu.be/GagII5PAeKg
► Follow us on Twitter: https://twitter.com/BugCodingThe
► Support us on Patreon: https://www.patreon.com/TheCodingBug
DISCLAIMER: Links included in this description might be affiliate links. If you purchase a product or service with the links that I provide I may receive a small commission. There is no additional charge to you!

Написать комментарий


Комментариев нет.